

Viernes 3 de marzo de 2023 Seminario: El extraño mundo de las alergias. Alergia a LTP

Moderadora: Blanca Espínola Docio

Pediatra. CS Luis Vives. Alcalá de Henares. Madrid. Vocal de la AMPap.

Ponente/monitora:

■ Yolanda Aliaga Mazas

FEA Pediatría. Hospital Universitario Miguel Servet. Zaragoza.

Textos disponibles en www.aepap.org

¿Cómo citar este artículo?

Aliaga Mazas Y. El extraño mundo de las alergias. Alergia a LTP. En: AEPap (ed.). Congreso de Actualización en Pediatría 2023. Madrid: Lúa Ediciones 3.0; 2023. p. 149-157.

El extraño mundo de las alergias. Alergia a LTP

Yolanda Aliaga Mazas

FEA Pediatría. Hospital Universitario Miguel Servet. Zaragoza. yolaaliaga@hotmail.com

RESUMEN

Las proteínas transportadoras de lípidos (LTP) constituyen una familia de proteínas ampliamente distribuida en el reino vegetal. Representan la causa más frecuente de alergia alimentaria y anafilaxia inducida por alimentos en adultos del área mediterránea

La proteína Pru p 3, la LTP del melocotón, es el alérgeno más relevante en la alergia a frutas rosáceas en la población española, y suele ser el sensibilizante primario en la mayoría de los pacientes alérgicos a esta familia de alérgenos.

Aunque su presencia es más conocida y estudiada en las frutas rosáceas, las LTP se encuentran en múltiples alimentos como frutas, frutos secos, verduras, hortalizas, cereales además de en diferentes pólenes, como el de platanero, olivo o artemisia.

La sintomatología de la alergia a las LTP es muy variable, desde urticaria de contacto o síndrome de alergia oral hasta clínica sistémica como Anafilaxia. En ocasiones los pacientes presentan síntomas únicamente en presencia de cofactores, como el ejercicio físico o la toma de antiinflamatorios, presentando en un alto porcentaje reacción más severa. Debido a la gran heterogeneidad clínica, el manejo de estos va a suponer un gran reto para el especialista.

La dieta de los pacientes alérgicos a las LTP en ocasiones es difícil de llevar a cabo y ha de ser personalizada en función del perfil de sensibilización, la presencia o no de cofactores y los alimentos tolerados habitualmente. Actualmente disponemos de un extracto purificado de Pru p 3 para administración sublingual que ha demostrado eficacia y seguridad, si bien hacen falta estudios en población pediátrica.

La alergia alimentaria es un importante problema de salud pública que afecta tanto a niños como adultos y cuya prevalencia está aumentando en las últimas décadas. Afecta a la calidad de vida y al bienestar psicológico de las personas que la padecen y sus cuidadores, y supone una importante carga social y económica en los países desarrollados¹.

Se estima que la alergia alimentaria afecta a un 1-3% de la población general, siendo más frecuente en niños menores de 3 años, en los que la prevalencia puede llegar al 8%².

El estudio Alergológica 2015 muestra cómo la prevalencia de alergia alimentaria en España entre los pacientes que acudieron por primera vez a un alergólogo fue del 11,4%, objetivándose un incremento respecto a los estudios de Alergológica 1992 (3,6%) y 2005 (7,4%). Las frutas y frutos secos fueron globalmente los alimentos más frecuentemente implicados.

El diagnóstico de la alergia alimentaria IgE mediada se basa fundamentalmente en una historia clínica detallada y en la realización tanto de pruebas *in vivo* como pruebas *in vitro*, que tratan de detectar la presencia de IgE específicas frente a un determinado alérgeno.

- Pruebas in vivo: las pruebas cutáneas o prick test detectan la presencia de IgE específicas fijadas a la superficie del mastocito.
- Pruebas in vitro: determinación en sangre de IgE específica libre en plasma.

La presencia de IgE específica frente a un determinado alérgeno únicamente indica la presencia de sensibili-

zación y solo en el caso en el que ese alimento produzca sintomatología en nuestro paciente hablaremos de alergia. De esta forma, la prueba de provocación oral sigue siendo el *Gold standard* para confirmar el diagnóstico de alergia alimentaria.

DIAGNÓSTICO MOLECULAR O POR COMPONENTES ALERGÉNICOS

Para hablar de diagnóstico molecular o por componentes, primero es importante diferenciar los siguientes conceptos (**Figura 1**):

- Fuente alergénica: tejido, partícula, alimento u organismo capaz de desencadenar una respuesta alérgica. Ejemplo: melocotón, cacahuete, ácaros del polvo, polen de gramíneas...
- Extracto alergénico: mezcla cruda no fraccionada de proteínas, polisacáridos y lípidos obtenida a partir de una fuente alergénica. Los extractos alergénicos completos suelen ser una solución acuosa, glicerinada o un liofilizado que se obtiene de la fuente alergénica y que van a emplearse con finalidad diagnóstica o terapéutica (extractos para inmunoterapia subcutánea y sublingual).
- Componente alergénico/alérgeno: molécula (proteína o glucoproteína) derivada de una fuente alergénica determinada que es identificada por anticuerpos específicos de clase IgE, es decir son aquellos componentes de una fuente alergénica capaces de desencadenar una respuesta alérgica. Estos componentes pueden obtenerse:
 - De la fuente natural: alérgenos nativos purificados.
 - Mediante técnicas de ADN-recombinante: alérgenos recombinantes.

Tradicionalmente el diagnóstico alergológico se ha realizado utilizando **extractos completos de fuentes alergénicas**. Estos extractos son una mezcla de proteínas, glucoproteínas y polisacáridos, que se obtienen de

la fuente alergénica completa y en los que no todos los componentes van a ser capaces de desencadenar una reacción alérgica.

A finales de los años 80, la difusión de técnicas de ADN recombinante permitió la identificación y obtención de **alérgenos purificados** (naturales o recombinantes) y hoy en día muchas de las moléculas alergénicas más comunes han sido clonadas o purificadas, se conoce su estructura tridimensional y pueden ser producidas consistentemente.

Debido al creciente número de alérgenos identificados, se ha establecido una nomenclatura sistemática de alérgenos, aprobada por el Subcomité de Nomenclatura de Alérgenos de la Organización Mundial de la Salud (OMS/IUIS)³. El subcomité se ha encargado a su vez de desarrollar y mantener una base de datos completa de las proteínas alergénicas conocidas, a la que se puede acceder en http://www.allergen.org.

Los componentes alergénicos se nombran utilizando las tres primeras letras del género de la fuente alergénica y la primera o las dos primeras letras del nombre de la especie, seguido de un número en cifras arábigas que refleja el orden en que el alérgeno se ha aislado y caracterizado. Ejemplos:

- Melocotón = Prunus persica. Componentes alergénicos del melocotón: Pru (prunus), p (persica), 1, 2, 3...: Pru p 1, Pru p 2, Pru p 3, Pru p 4, etc. Cada uno de estos componentes es una proteína diferente, perteneciente a familias diferentes.
- Cacahuete_= Arachis hipogea. Componentes alergénicos del cacahuete: Ara (Arachis), h (hipogea), 1, 2, 3...: Ara h 1, Ara h 2, Ara h 3, etc.

El empleo de estas proteínas con fines diagnósticos ha dado lugar a un nuevo concepto denominado "diagnóstico por componentes", que nos permite conocer de una forma precisa cuales son las moléculas responsables de desencadenar la reacción alérgica en nuestro paciente".

Actualmente podemos determinar IgE específica frente a componentes alergénicos mediante técnicas:

- Syngleplex: determinación de IgE específica frente a un determinado componente mediante InmunoCAP®
- Multiplex: plataformas que permiten la detección simultánea de IgE específica frente a más de un centenar de componentes alergénicos en una pequeña muestra de suero. El sistema ISAC (Immuno Solid-phase Allergen Chip System*) es un método de cuantificación múltiple de IgE específica frente a 112 componentes de 48 fuentes alergénicas diferentes.

Las principales aportaciones del diagnóstico molecular o por componentes son:

- Conocer de forma precisa el perfil de sensibilización del paciente
- Identificar aquellos pacientes que están sensibilizados a moléculas asociadas a una mayor gravedad clínica
- Poder diferenciar una sensibilización genuina a una determinada fuente alergénica de un fenómeno de reactividad cruzada.
- Adecuar y optimizar la intervención terapéutica para cada paciente. Es una herramienta fundamental a la hora de indicar correctamente un tratamiento de inmunoterapia, pero también ayuda a evitar dietas de evitación muy restrictivas en pacientes polisensibilizados a alimentos.

REACTIVIDAD CRUZADA

Cada vez es más habitual encontrar en nuestra práctica clínica diaria niños alérgicos a frutas, frutos secos, vegetales, etc., que presentan sensibilización a varios alimentos no pertenecientes a la misma familia, es decir, sin relación taxonómica de especie. Muchos de ellos a su vez presentan clínica de asma o rinoconjuntivitis alérgica por sensibilización a pólenes.

Dentro de los componentes alergénicos de una determinada fuente hay moléculas propias de la fuente alergénica que se identifican como marcadores de sensibilización genuina y moléculas de reactividad cruzada

Estas últimas son componentes presentes en múltiples fuentes alergénicas diferentes, taxonómicamente relacionadas o no, y que, debido a su elevada homología, ya sea en su secuencia de aminoácidos o en su estructura tridimensional, presentan epítopos comunes que pueden ser reconocidos por una misma IgE.

Cuando la reactividad cruzada se produce entre especies sin relación taxonómica, ésta se explica por la presencia de los llamados **panalérgenos**, nombre que reciben por su distribución ubicua en el reino vegetal o animal⁵

Los más estudiados hasta el momento son las profilinas, las proteínas transportadoras de lípidos y las proteínas de tipo PR-10 u homólogos de Bet v 1.

También existen otros panalérgenos relevantes como las tropomiosinas (principales responsables del fenómeno de reactividad cruzada entre mariscos, ácaros y anisakis) y las parvalbúminas de los pescados.

PROTEÍNAS TRANSPORTADORAS DE LÍPIDOS

Actualmente la alergia a las proteínas transportadoras de lípidos es la causa más frecuente de alergia alimentaria en adultos de países del área mediterránea, así como la causa más frecuente de reacciones anafilácticas inducidas por alimentos.

Las LTP forman parte de la super familia de las prolaminas y por su función son consideradas proteínas relacionadas con la patogénesis (PR-14). Ampliamente distribuidas en el reino vegetal y altamente conservadas filogenéticamente, participan en funciones esenciales de las plantas como la formación de la cutícula y la defensa frente a patógenos. Esta función de defensa explica que la concentración de LTP sea muy superior en la piel de frutas y verduras respecto a la pulpa.

Las LTP son proteínas de 90 a 95 aminoácidos y 9 Kda de peso que poseen una estructura muy compacta estabilizada por 4 puentes disulfuro. Estas características estructurales, les confieren una gran resistencia a la temperatura, pH ácido y digestión enzimática, por lo que se comportan como verdaderos alérgenos alimentarios, capaces de inducir sensibilización por vía digestiva⁶⁷.

Fueron descritas por primera vez a principios de los años 90, identificándose como los principales alérgenos de las frutas rosáceas en España e Italia.

Posteriormente se han identificado proteínas pertenecientes a la familia de las LTP en:

- Otras frutas: kiwi, naranja, mandarina, limón, plátano, mora, granada, etc.
- Frutos secos: avellana, nuez, semilla de girasol, castaña.
- Leguminosas: cacahuete, lenteja, alubias.
- Vegetales: tomate, lechuga, espárrago, apio, cebolla, zanahoria, brócoli, etc.
- Cereales: trigo, maíz, arroz, cebada, espelta.
- Pólenes: olivo, platanero, artemisa, parietaria.

VARIACIONES GEOGRÁFICAS DE LA ALERGIA A PROTEÍNA LTP

Los alérgenos responsables de la alergia a alimentos vegetales varían según el área geográfica y esto es debido tanto a factores climáticos, hábitos alimenticios como a los pólenes predominantes de cada región.

La sensibilización y la alergia a las LTP es muy prevalente en adultos y niños del sur de Europa, no obstante, incluso dentro de estos países existen marcadas diferencias de prevalencia según la región⁸.

En el norte y centro de Europa, la alergia a alimentos de origen vegetal está asociada frecuentemente a las proteínas PR-10, análogas del polen de abedul, sin embargo, cada vez aparecen más casos publicados de alergia a LTP.

ALIMENTOS DESENCADENANTES DE SÍNTOMAS

El melocotón es el alimento que con más frecuencia actúa como desencadenante de reacciones, especialmente en el sur de Europa.

Pru p 3, la LTP del melocotón domina la respuesta inmune sobre otras LTP de otros alimentos y pólenes, siendo en la mayoría de los casos el **sensibilizador primario** y el que posteriormente dirige la respuesta inmune hacia el reconocimiento de otras LTP.

Hasta un 60% de los pacientes alérgicos a melocotón debutan antes de los 15 años. Posteriormente pueden aparecer reacciones con otros alimentos, siendo entre todas las LTP alergénicas descritas, la del melocotón, otras frutas rosáceas, frutos secos (nuez), cacahuete, lechuga y manzana las que con más frecuencia producen reactividad clínica.

El niño alérgico a proteínas LTP puede mostrar un perfil variable de sensibilización. Podemos encontrar niños con reconocimiento de un solo alimento (habitualmente el melocotón en países del área mediterránea) hasta un gran número de alimentos vegetales no relacionados. En general, este fenómeno está relacionado con el nivel de IgE específica frente a Pru p 3.

Los pacientes que muestran niveles bajos de IgE específica frente a Pru p 3 no suelen reconocer las LTP de otras fuentes alergénicas y cuanto más elevados son estos niveles, mayor es el número de alimentos distintos del melocotón que reconocen⁹.

Este proceso parece seguir una secuencia bastante precisa y predecible, empezando por el melocotón y siguiendo con otras frutas rosáceas, pasando por los frutos secos (avellanas y nueces), el cacahuete y, con menos frecuencia otros alimentos vegetales.

Este comportamiento sugiere que (al menos en los países mediterráneos) Pru p 3 representa el principal sensibilizador que contiene los epítopos alergénicos más relevantes de las LTP mientras que las LTP de otras fuentes alergénicas muestran un número gradualmente más limitado de epítopos y necesitan niveles más altos de IgE específica de Pru p 3 para ser reconocidas.

VÍAS DE SENSIBILIZACIÓN A PROTEÍNA LTP

Vía digestiva

Las LTP son consideradas como alérgenos alimentarios completos o de clase I, capaces de sensibilizar a través del tracto gastrointestinal. Sus características bioquímicas y moleculares le confieren una elevada resistencia a la digestión enzimática, al pH ácido y al calor. Tordesillas et al. demostraron que la Pru p 3 tiene una gran capacidad para atravesar la barrera intestinal, confirmando así su potencial de sensibilización a través de esta vía¹⁰

Vía cutánea

La sensibilización primaria a Pru p 3 también puede desarrollarse a través de la vía cutánea, tanto en la infancia como en la edad adulta. Al igual que ocurre con otros alimentos como la leche y el huevo, la disrupción de la barrera cutánea en lactantes con eccema puede favorecer la sensibilización a proteínas LTP incluso antes de la ingesta del alimento.

Vía inhalatoria

Existen múltiples ejemplos de síndromes de reactividad cruzada polen-alimentos en los que la alergia alimentaria aparece tras una sensibilización inicial a pólenes vía inhalatoria.

En nuestro medio es habitual encontrar a pacientes alérgicos al polen de gramíneas que con el tiempo presentan síndrome de alergia oral con alimentos vegetales por sensibilización a profilinas.

- Otro ejemplo muy conocido es el de la reactividad cruzada entre el principal alérgeno del polen de abedul Bet v 1, una PR-10, y alérgenos homólogos en varias frutas y verduras.
- Casos menos conocidos y más recientemente descritos son la alergia alimentaria a proteínas reguladas por giberelinas, que sigue a la sensibilización a un alérgeno menor de polen de ciprés.

Las LTP de los pólenes de plátano de sombra (Pla a 3), artemisa (Art v 3) y olivo (Ole e 7) se han propuesto como posible agente sensibilizador en zonas con altos niveles ambientales. Además de estos pólenes, la Pru p 3 del melocotón podría sensibilizar a través de la vía aérea apareciendo síntomas respiratorios y posteriormente alergia con la ingesta de la fruta.

Recientemente, se ha descrito la posibilidad de la sensibilización primaria tras inhalación o contacto con la LTP del cannabis (Can s 3). Esta sensibilización se caracteriza por un patrón diferente de alergia alimentaria y aparece con más frecuencia en zonas no mediterráneas como el norte de Europa^{11,12}.

Sin embargo, estudios recientes ponen en duda la importancia de esta vía inhalatoria como responsable de la sensibilización primaria a las LTP¹³.

MANIFESTACIONES CLÍNICAS Y GRAVEDAD DE LA ALERGIA A PROTEÍNAS LTP

Los pacientes alérgicos a las proteínas LTP van a presentar una **gran variabilidad de manifestaciones clínicas**, pudiendo presentar desde síntomas leves como urticaria de contacto o el síndrome de alergia oral (SAO) hasta reacciones graves como la anafilaxia o el shock anafiláctico, pasando por síntomas moderados como la urticaria y angioedema o la clínica gastrointestinal aislada tras la ingesta.

Aunque la alergia a LTP se relaciona con reacciones sistémicas, posiblemente la manifestación clínica más habitual sea el Síndrome de alergia oral.

Es habitual encontrar pacientes asintomáticos que únicamente presentan clínica en presencia de cofactores.

Gravedad de la sintomatología:

- Algunos estudios publicados concluyen que los pacientes monosensibilizados a Pru p 3 pueden ser más propensos a experimentar síntomas graves, sin embargo, otros han demostrado que aquellos sensibilizados a más de cinco LTP diferentes (de alimentos o polen) tienen un riesgo significativamente mayor de desarrollar reacciones sistémicas¹⁴.
- Es habitual que los niños alérgicos a LTP presenten en presencia de cofactores reacciones más graves. Los principales son el ejercicio físico, la toma de AINES, alcohol...
- Además, algunos estudios sugieren que la cosensibilización a las proteínas PR10 y /o a las profilinas se relaciona con una menor gravedad de la sintomatología, siendo esta cosensibilización un factor protector.

DIAGNÓSTICO

El diagnóstico de la alergia IgE mediada a las LTP se basará inicialmente en la realización de una historia clínica detallada y ésta será fundamental para seleccionar las pruebas complementarias a realizar:

 Debemos de sospechar la presencia de una alergia a proteínas LTP siempre que un paciente acuda a nuestra consulta por haber presentado síntomas IgE mediados tras la ingesta de frutas rosáceas, frutos secos u otros alimentos vegetales.

A su vez cuando un niño haya presentado episodios de urticaria, angioedema o anafilaxia tras haber tomado un AINE deberemos investigar la posibilidad de que algún alimento esté implicado, actuando en este caso el AINE como cofactor y no como principal desencadenante de la reacción.

En la historia clínica debemos de recoger:

- Sintomatología que presentó nuestro paciente.
- Tiempo entre la ingesta del alimento y la aparición de los síntomas (habitualmente en alergia IgE mediada será inferior a 2 horas).
- Alimento/s implicados en la reacción. Si el desencadenante fue una fruta rosácea preguntar si la fruta estaba pelada o no ya que la mayoría de los niños alérgicos a LTP van a tolerar la fruta pelada.
- Alimentos de origen vegetal que tolera y consume habitualmente, haciendo hincapié en la tolerancia a frutos secos.
- Presencia de cofactores
- Preguntar por la presencia de síntomas de rinoconjuntivitis o asma.
- 2. Pruebas complementarias:
 - Pruebas cutáneas:

Actualmente se dispone de extracto purificado de Pru p 3 para la realización de pruebas cutáneas (ALK Abelló). Realizaremos pruebas cutáneas con los extractos de los alimentos implicados y es recomendable realizar test cutáneos a frutos secos. Si además el paciente presenta clínica de asma y/o rinoconjuntivitis realizaremos batería de neumoalérgenos.

■ Determinación de IgE específica en suero

Disponemos de Pru p3 recombinante para la determinación de IgE específica in vitro (ImmunoCap-Thermo Scientific®).

3. La prueba de exposición controlada constituye el Gold estándar para el diagnóstico de alergia

alimentaria. Es habitual en niños alérgicos a LTP encontrar pruebas cutáneas positivas a múltiples alimentos vegetales sin embargo muchos de ellos tolerarán un gran número de alimentos y en muchas ocasiones también las frutas rosáceas peladas. Sin embargo, debemos tener presente que:

- La cantidad de proteína LTP puede ser muy variable de una pieza de fruta a otra (en función de cómo se haya cultivado, almacenado, grado de madurez...) y por lo tanto una prueba de exposición controlada negativa no garantiza al cien por cien que nuestro paciente siempre la tolere.
- La prueba de exposición se realiza en condiciones basales, de forma controlada y en ausencia de cofactores.

TRATAMIENTO DEL NIÑO ALÉRGICO A PROTEÍNAS LTP

El tratamiento clásico de la alergia alimentaria ha consistido en llevar a cabo una dieta de evitación de los alimentos a los que el paciente es alérgico. Sin embargo, la dieta de evitación en ocasiones no es fácil de llevar a cabo ni asegura la ausencia de reacciones.

No existen estudios que analicen el impacto de la dieta de evitación en la evolución natural de la alergia a proteínas transportadoras de lípidos ni cual es la probabilidad de adquirir una tolerancia espontánea de estos alimentos.

El manejo terapéutico de los niños alérgicos a LTP todavía es más complicado, no solo debido a la heterogeneidad de los pacientes, sino también debido a la estabilidad de los alérgenos LTP, la variabilidad del contenido de LTP de los alimentos y el efecto de los cofactores.

Es por ello que las recomendaciones dietéticas deberán ser **individualizadas para cada paciente** en función de su perfil de sensibilización y reconocimiento, según las reacciones que haya presentado, la presencia o no de cofactores implicados y los alimentos consumidos y tolerados habitualmente¹⁵

La educación del paciente y de sus cuidadores es de suma importancia, de forma que hay que instruir tanto en el manejo de las reacciones como en la evitación de cofactores.

Desde el año 2011 disponemos en España de un extracto de melocotón cuantificado en Pru p 3 para administración sublingual en pacientes alérgicos a LTP. A pesar de no contar con estudios en población infantil, sí existen estudios sobre su seguridad, eficacia y cambios inmunológicos incluso en pacientes con antecedente de reacciones graves, habiendo mostrado una disminución de los niveles de IgE y un aumento de los niveles de IgG4 para pru p3 y Ara h9 y la capacidad de inducir cambios en la respuesta celular con un cambio a respuesta de tolerancia TH1¹⁶.

Estudios más recientes han demostrado que la inmunoterapia sublingual con Pru p 3 no solo aumenta la tolerancia al melocotón, sino que también induce un aumento de tolerancia de otros alimentos como cacahuete en pacientes alérgicos al mismo, por sensibilización a Ara h 9¹⁷.

El disponer de una inmunoterapia estandarizada con LTP de melocotón ha supuesto un avance importante en el tratamiento de esta patología.

CONCLUSIONES

- La alergia a frutas, frutos secos y alimentos vegetales es cada vez más frecuente en nuestro medio, siendo las LTP las proteínas implicadas en una gran mayoría de los casos.
- La alergia a las proteínas LTP es una patología muy heterogénea con una gran variabilidad tanto en su expresión clínica, como en los perfiles de sensibilización.
- En los países del área mediterránea, el melocotón suele actuar como sensibilizador primario y posteriormente los pacientes desarrollan sintomato-

logía con otros alimentos, en especial con frutos secos y otras frutas rosáceas.

- A pesar de que las LTP son proteínas altamente resistentes, en muchas ocasiones la sintomatología que presentan estos pacientes se limita a un síndrome de alergia oral. Sin embargo, es habitual que en presencia de cofactores aparezcan reacciones más graves.
- Debemos de sospechar una posible alergia a proteínas transportadoras de lípidos si nuestro paciente ha presentado:
 - Sintomas IgE tras la ingesta de frutas rosáceas o frutos secos
 - · Urticaria de contacto con fruta sin pelar
 - Si ha desarrollado una reacción anafiláctica en presencia de un cofactor
- Actualmente, y como alternativa a las dietas de evitación, en ocasiones muy restrictivas, disponemos de un extracto sublingual de Pru p3 que ha demostrado ser eficaz y seguro, induciendo la tolerancia en estos pacientes.

BIBLIOGRAFÍA

- Warren CM, Jiang J, Gupta RS. Epidemiology and Burden of Food Allergy. Curr Allergy Asthma Rep. 2020;20:6.
- Rona RJ, Keil T, Summers C, Gislason D, Zuidmeer L, Sodergren E, et al. The prevalence of food allergy: a meta-analysis. J Allergy Clin Immunol. 2007;120:638-46.
- Pomes A., Davies J.M., Gadermaier G. WHO/IUIS allergen nomenclature: providing a common language. Mol Immunol. 2018;100:3-13.
- 4. Steering Committee Authors; Review Panel Members. A WAO ARIA GA2LEN consensus document

- on molecular-based allergy diagnosis (PAMD@): Update 2020. World Allergy Organ J. 2020;13:100091.
- Hauser M, Roulias A, Ferreira F, Egger M. Panallergens and their impact on the allergic patient. Allergy Asthma Clin Immunol. 2010;6:1.
- Marrion D, Douliez J, Gautier M, Elmorjani, K. Plant Lipid Transfer Proteins: Relationship between Allergenicity and Structural, Biological and Tecnological Properties. En: Mills E, Shewry P (eds). Plant food allergens. Oxford, UK: Blackwell Science Ltd; 2004. p. 57-69.
- Egger M, Hauser M, Mari A, Ferreira F, Gadermaier G. The role of lipid transfer proteins in allergic diseases. Curr Allergy Asthma Rep. 2010;10:326-35.
- Skypala IJ, Asero R, Barber D, Cecchi L, Diaz Perales A, Hoffmann-Sommergruber K, et al. Non-specific lipid-transfer proteins: Allergen structure and function, cross-reactivity, sensitization, and epidemiology. Clin Transl Allergy. 2021;11:e12010.
- Asero R, Mistrello G, Roncarolo D, Amato S. Relationship between peach lipid transfer protein specific IgE levels and hypersensitivity to non-Rosaceae vegetable foods in patients allergic to lipid transfer protein. Ann Allergy Asthma Immunol. 2004;92(2):268-72.
- Tordesillas L, Gómez-Casado C, Garrido-Arandia M, Murua-García A, Palacín A, Varela J, et al. Transport of Pru p 3 across gastrointestinal epithelium - an essential step towards the induction of food allergy?. Clin Exp Allergy. 2013;43(12):1374-83.
- 11. Decuyper II, Rihs HP, Van Gasse AL, Elst J, De Puysseleyr L, Faber MA, et al. Cannabis allergy: what the

- clinician needs to know in 2019. Expert Rev Clin Immunol. 2019;15(6):599-606.
- Decuyper II, VanGasse AL, Faber MA, Elst J, Mertens C, Rihs HP, et al. Exploring the diagnosis and profile of cannabis allergy. J Allergy Clin Immunol Pract. 2019;7:983-89.
- Asero R, Brusca I, Cecchi L, Pignatti P, Pravettoni V, Scala E, et al. Why lipid transfer protein allergy is not a pollen-food syndrome: novel data and literature review. Eur Ann Allergy Clin Immunol. 2022;54:198-206.
- Scala E, Till SJ, Asero R, Abeni D, Guerra EC, Pirrotta L, et al. Lipid transfer protein sensitization: reactivity profiles and clinical risk assessment in an Italian cohort. Allergy. 2015;70:933-43.
- Skypala IJ, Bartra J, Ebo DG, Antje Faber M, Fernández-Rivas M, Gomez F, et al. The diagnosis and management of allergic reactions in patients sensitized to non-specific lipid transfer proteins. Allergy. 2021;76:2433-46.
- Fernández-Rivas M, Garrido Fernández S, Nadal JA, Díaz de Durana MD, García BE, González-Mancebo E, et al. Randomized double-blind, placebo-controlled trial of sublingual immunotherapy with a Pru p 3 quantified peach extract. Allergy. 2009;64:876-83.
- Gomez F, Bogas G, Gonzalez M, Campo P, Salas M, Diaz-Perales A, et al. The clinical and immunological effects of Pru p 3 sublingual immunotherapy on peach and peanut allergy in patients with systemic reactions. Clin Exp Allergy. 2017;47:339-350.